Aerosol Influence on Cloud Microphysics Examined by Satellite Measurements and Chemical Transport Modeling
نویسندگان
چکیده
Anthropogenic aerosols are hypothesized to decrease cloud drop radius and increase cloud droplet number concentration enhancing cloud optical depth and albedo. Here results have been used from a chemical transport model driven by the output of a numerical weather prediction model to identify an incursion of sulfate-laden air from the European continent over the mid–North Atlantic under the influence of a cutoff low pressure system during 2–8 April 1987. Advanced Very High Resolution Radiometer (AVHRR) measurements of visible and near-infrared radiance are used to infer microphysical properties of low-altitude (T 5 260–275 K) maritime clouds over the course of the event. Examination of the cloud optical depth, drop radius, and drop number concentration on the highand low-sulfate days has allowed identification of the increase in cloud droplet number concentration and decrease in cloud drop radius associated with the sulfate incursion. These observations are consistent with the Twomey mechanism of indirect radiative forcing of climate by aerosols.
منابع مشابه
Influence of anthropogenic aerosol on cloud optical depth and albedo shown by satellite measurements and chemical transport modeling.
The Twomey effect of enhanced cloud droplet concentration, optical depth, and albedo caused by anthropogenic aerosols is thought to contribute substantially to radiative forcing of climate change over the industrial period. However, present model-based estimates of this indirect forcing are highly uncertain. Satellite-based measurements would provide global or near-global coverage of this effec...
متن کاملPotential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data
Aerosols have a large potential to influence climate through their effects on the microphysics and optical properties of clouds and, hence, on the Earth’s radiation budget. Aerosol–cloud interactions have been intensively studied in polluted air, but the possibility that the marine biosphere plays an important role in regulating cloud brightness in the pristine oceanic atmosphere remains largel...
متن کاملA Method for Forecasting Cloud Condensation Nuclei Using Predictions of Aerosol Physical and Chemical Properties from WRF/Chem
Model investigations of aerosol–cloud interactions across spatial scales are necessary to advance basic understanding of aerosol impacts on climate and the hydrological cycle. Yet these interactions are complex, involving numerous physical and chemical processes. Models capable of combining aerosol dynamics and chemistry with detailed cloud microphysics are recent developments. In this study, p...
متن کاملA 3D-CTM with detailed online PSC-microphysics: analysis of the Antarctic winter 2003 by comparison with satellite observations
We present the first detailed microphysical simulations which are performed online within the framework of a global 3-D chemical transport model (CTM) with full chemistry. The model describes the formation and evolution of four types of polar stratospheric cloud (PSC) particles. Aerosol freezing and other relevant microphysical processes are treated in a full explicit way. Each particle type is...
متن کاملNew approaches to quantifying aerosol influence on the cloud radiative effect.
The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000